Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Let 𝜋 and \pi^{\prime}be cuspidal automorphic representations of \mathrm{GL}(n)and \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of \mathrm{GL}(2).more » « lessFree, publicly-accessible full text available March 22, 2026
- 
            We prove the density hypothesis for wide families of arithmetic orbifolds arising from all division quaternion algebras over all number fields of bounded degree. Our power-saving bounds on the multiplicities of non-tempered representations are uniform in the volume and spectral aspects.more » « less
- 
            Abstract LetL/Kbe a Galois extension of number fields with Galois groupG. We show that if the density of prime ideals inKthat split totally inLtends to 1/∣G∣ with a power saving error term, then the density of prime ideals inKwhose Frobenius is a given conjugacy classC⊂Gtends to ∣C∣/∣G∣ with the same power saving error term. We deduce this by relating the poles of the corresponding Dirichlet series to the zeros ofζL(s)/ζK(s).more » « less
- 
            Abstract We estimate, in a number field, the number of elements and the maximal number of linearly independent elements, with prescribed bounds on their valuations. As a by-product, we obtain new bounds for the successive minima of ideal lattices. Our arguments combine group theory, ramification theory, and the geometry of numbers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
